doi:  10.3878/j.issn.1006-9895.1804.17291
不同微物理方案对台风“彩虹”(2015)降水影响的比较研究

A Comparative Study of Effects of Different Microphysics Schemes on Precipitation Simulation for Typhoon Mujigae (2015)
摘要点击 356  全文点击 264  投稿时间:2017-11-29  
查看HTML全文  查看全文  查看/发表评论  下载PDF阅读器
基金:  国家重点研究发展计划项目2018YFC1506801,国家重点基础研究发展计划项目2015CB453201,国家自然科学基金项目41675059、41375066、41530427
中文关键词:  台风降水  云微物理过程  数值模拟  “彩虹”台风
英文关键词:  Typhoon rainfall  Cloud microphysical process  Numerical simulation  Typhoon Mujigae
           
作者中文名作者英文名单位
庞琦烨PANG Qiye南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;中国科学院大气物理研究所云降水物理与强风暴重点实验室(LACS), 北京 100029
平凡PING Fan南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;中国科学院大气物理研究所云降水物理与强风暴重点实验室(LACS), 北京 100029
沈新勇SHEN Xinyong南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044
刘靓珂LIU Liangke南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044
引用:庞琦烨,平凡,沈新勇,刘靓珂.2019.不同微物理方案对台风“彩虹”(2015)降水影响的比较研究[J].大气科学,43(1):202-220,doi:10.3878/j.issn.1006-9895.1804.17291.
Citation:PANG Qiye,PING Fan,SHEN Xinyong,LIU Liangke.2019.A Comparative Study of Effects of Different Microphysics Schemes on Precipitation Simulation for Typhoon Mujigae (2015)[J].Chinese Journal of Atmospheric Sciences (in Chinese),43(1):202-220,doi:10.3878/j.issn.1006-9895.1804.17291.
中文摘要:
      本文以GFS资料为初始场,利用WRF(v3.6.1)模式对2015年第22号台风“彩虹”进行了数值研究。采用CMA(中国气象局)台风最佳路径、MTSAT卫星、自动站降水为观测资料,对比了4个微物理方案(Lin、WSM6、GCE和Morrison)对“彩虹”台风路径、强度、结构、降水的模拟性能。模拟发现上述4个云微物理方案都能较好地模拟出“彩虹”台风西行登陆过程,但是其模拟的台风强度、结构及降水存在较大差异;就水成物而言,除GCE方案对雨水的模拟偏高以外,其他方案对云水、雨水过程的模拟较为接近,其差异主要存在于云冰、雪、霰粒子的模拟上。本文对比分析了WSM6和Morrison两个方案模拟的云微物理过程,发现WSM6方案模拟的雪和霰粒子融化过程显著强于Morrison方案,但是冰相粒子间转化过程的强度明显弱于Morrison方案。云微物理过程的热量收支分析表明: WSM6方案模拟的眼区潜热更强,暖心结构更为显著,台风中心气压更低。细致的云微物理转化分析表明,此次台风降水的主要云微物理过程是水汽凝结成云水和凝华为云冰;生成的云水一方面被雨水收集碰并直接转化为雨水,另一方面先被雪粒子碰并收集转化为霰,然后霰粒子融化成雨水;而生成的云冰则通过碰并增长转化为雪。小部分雪粒子通过碰并收集过冷水滴并淞附增长为霰粒子,随后融化为雨水,大部分雪粒子则直接融化形成地面降水。
Abstract:
      Using GFS (Global Forecast System) data as the initial field, numerical simulations of typhoon Mujigae in 2015 were conducted using the WRF3.6.1 (Weather Research and Forecasting Model). A comparative study of four microphysical schemes (Lin, WSM6, GCE, and Morrison) with concerns of the simulated typhoon track, intensity, precipitation, and contents of hydrometeors were carried out using the best track dataset from CMA (China Meteorological Administration), MTSAT satellite data, and precipitation data collected at automatic weather stations. It is found that all the four cloud microphysical schemes can well simulate the westward movement and landfall of the typhoon. However, the simulated typhoon intensity, structure, and precipitation are quite different using the four different cloud microphysics schemes. In terms of the water content, precipitation is overestimated by the GCE scheme, while the other three schemes yield similar simulations of cloud water and rain. This result indicates that the differences among the schemes mainly exist in the simulation of cloud ice, snow, and graupel particles. Comparing the cloud physical transformation processes simulated by the WSM6 and Morrison scheme, it is found that the simulation of melting snow and graupel particles by the WSM6 scheme is better than that by the Morrison scheme, whereas the simulated strength of the conversion process between ice phase particles is weaker than that by the Morrison. The heat budget analysis for cloud microphysical process shows that strong diabatic heating is more concentrated over the eye area in the WSM6 scheme, which results in stronger warm core structure and lower central pressure than in other schemes. Detailed analysis of cloud microphysical conversion shows that the main cloud microphysics process involved in typhoon precipitation is the condensation and/or sublimation of water vapor into cloud water and/or cloud ice. The cloud water is then partly accreted directly into rainwater, and partly accreted by snow particles and form graupels, which finally become rainwater as the graupel particles descend to the melting layer. Through accretion, the cloud ice is converted into snow, while part of the snow particles collect super-cooled water droplets and rim into graupels, which then melt into rain. A considerable part of snow particles directly melt to form precipitation.
主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
联系电话: 010-82995051,010-82995052传真:010-82995052 邮编:100029 Email:dqkx@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号