doi:  10.3878/j.issn.1006-9895.1811.18189
2018年冬季南京三次暴雪过程微物理特征分析

Analysis on the Microphysical Characteristics of the Three Blizzard Processes in Nanjing in Winter of 2018
摘要点击 95  全文点击 21  投稿时间:2018-07-05  修订日期:2018-11-27
查看HTML全文  查看全文  查看/发表评论  下载PDF阅读器
基金:  国家重点研发计划“重大自然灾害监测预警与防范”重点专项(2018YFC1507905),国家自然科学基金,其它(江苏省研究生科研创新项目)
中文关键词:  暴雪过程 雪花谱 微物理参数 雪花速度谱 Z-I关系
英文关键词:  Blizzard processes Snowflake spectrum Microphysical parameters Snowflake velocity spectrum Z-I relation
                    
作者中文名作者英文名单位
李遥liyao南京信息工程大学
牛生杰niushengjie南京信息工程大学
吕晶晶lvjingjing南京信息工程大学
王静wangjing南京信息工程大学
王天舒wangtianshu南京信息工程大学
黄钦huangqin南京信息工程大学
王元wangyuan南京信息工程大学
引用:李遥,牛生杰,吕晶晶,王静,王天舒,黄钦,王元.2019.2018年冬季南京三次暴雪过程微物理特征分析[J].大气科学
Citation:liyao,niushengjie,lvjingjing,wangjing,wangtianshu,huangqin,wangyuan.2019.Analysis on the Microphysical Characteristics of the Three Blizzard Processes in Nanjing in Winter of 2018[J].Chinese Journal of Atmospheric Sciences (in Chinese)
中文摘要:
      为深入研究南京降雪微物理特征及变化,利用第二代激光雨滴谱仪PARSIVEL2、自动气象站观测资料及MICAPS数据,对2018年冬季南京的四次罕见强降雪过程中雪花的微物理参量进行分析。结果表明:(1)雪花谱基本呈多峰分布,个例1降雪强度增大时有小雪花向大雪花的转化,而其余三次过程则有雪花数浓度的显著增大。温度的差异使个例1大雪花形成机制与其余个例不同,最终导致了降雪稳定阶段,雪强增大的机制不同。(2)使用Gamma分布和M-P分布分别对四次降雪的不同阶段进行了拟合,Gamma 分布在各阶段的拟合优度均高于M-P分布拟合,降雪终止阶段拟合优度低于起始阶段及降雪全过程的拟合。四次降雪过程降雪粒子谱的Gamma分布分别为:N=107D-0.21exp(-0.54D),N=136D-0.54exp(-0.60D),N=256D0.38exp(-1.01D),N=9.39×104D4exp(-7.81D)。(3)个例1在3mm左右速度谱存在两个峰值,分别贴近结霜曲线和未结霜曲线,说明该次降雪大雪花的形成存在结霜增长和结霜碰并两种机制。(4)综合个例1、2、3,给出南京地区稳定的层状云强降雪的Z-I关系为Z=1708I1.51。
Abstract:
      In order to deeply study the microphysical characteristics and changes of snowfall in Nanjing, using the second-generation laser raindrop spectrometer PARSIVEL2, observation data of automatic weather stations and MICAPS data, four snowfalls in Nanjing in winter 2018 the microphysical parameters of snowflake were analyzed. The results show that: (1) It can be seen that there is a conversion from a small snowflake to a large snowflake when the snowfall intensity of Case 1 increases, while the other three processes have a significant increase in the snowflake concentration. The difference in temperature makes the snow formation mechanism of Case 1 different from the rest of the cases, which ultimately led to a stable snowfall stage, and the mechanisms for increasing snow intensity are different. (2) Using Gamma distribution and M-P distribution to fit the different stages of the four snowfalls respectively, the analysis shows that the goodness of fitting of the Gamma distribution at each stage is higher than that of M-P distribution, and the goodness of fitting of the snowfall termination stages lower than the initial stages and the whole process of snowfalls. The Gamma distribution of the snowfall particle spectrum during the four snowfalls are: N=107D-0.21exp(-0.54D), N=136D-0.54exp(-0.60D), N=256D0.38exp(-1.01D), N= 9.39x104D4exp (-7.81D). (3) There are two peaks in the velocity spectrum of Case 1 at about 3 mm, which are close to the frost curve and the unfrost curve respectively, indicating that there are two forming mechanisms for the snowfall. (4) Comprehensive Case 1, 2, and 3, the Z-I relationship for strong snowfalls during the period of stable stage of the stratiform cloud system in Nanjing is Z=1708I1.51.
主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
联系电话: 010-82995051,010-82995052传真:010-82995052 邮编:100029 Email:dqkx@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号