违反了 PRIMARY KEY 约束 'PK_t_counter'。不能在对象 'dbo.t_counter' 中插入重复键。 语句已终止。 利用慢特征分析法提取二维非平稳系统中的外强迫特征-Extracting the Driving Force Signal from Two-dimensional Non-stationary System Based on Slow Feature Analysis
doi:  10.3878/j.issn.1006-9585.2017.17097
利用慢特征分析法提取二维非平稳系统中的外强迫特征

Extracting the Driving Force Signal from Two-dimensional Non-stationary System Based on Slow Feature Analysis
摘要点击 232  全文点击 293  投稿时间:2017-07-05  
查看HTML全文   下载PDF   查看/发表评论  下载PDF阅读器
基金:  国家重点研发计划2017YFC1501804,国家自然科学基金91737102、41575058
中文关键词:  慢特征分析法  二维非平稳系统  外强迫信号
英文关键词:  Slow feature analysis  Two-dimensional non-stationary system  Driving force signal
           
作者中文名作者英文名单位
范开宇FAN Kaiyu成都信息工程大学大气科学学院, 成都 610225;中国科学院大气物理研究所中层大气与全球环境探测重点实验室, 北京 100029
王革丽WANG Geli中国科学院大气物理研究所中层大气与全球环境探测重点实验室, 北京 100029
李超LI Chao成都信息工程大学大气科学学院, 成都 610225
潘昕浓PAN Xinnong中国科学院大气物理研究所中层大气与全球环境探测重点实验室, 北京 100029
引用:范开宇,王革丽,李超,潘昕浓.2018.利用慢特征分析法提取二维非平稳系统中的外强迫特征[J].气候与环境研究,23(3):287-298,doi:10.3878/j.issn.1006-9585.2017.17097.
Citation:FAN Kaiyu,WANG Geli,LI Chao,PAN Xinnong.2018.Extracting the Driving Force Signal from Two-dimensional Non-stationary System Based on Slow Feature Analysis[J].Climatic and Environmental Research(in Chinese),23(3):287-298,doi:10.3878/j.issn.1006-9585.2017.17097.
中文摘要:
      慢特征分析法(Slow Feature Analysis,SFA)是一个从快变的信号中提取慢变特征的有效方法,它的提出丰富了人们对非平稳系统外强迫特征的重建手段。本文以Henon映射为基础,构造二维非平稳系统模型,尝试SFA方法在二维复杂非平稳系统中重建外强迫特征的能力。试验表明,SFA方法能够较好地从单时变参数Henon映射中提取出外强迫信号;通过结合小波变换技术,可以还原双时变参数Henon映射中的外强迫信号。另外,本文利用SFA方法重建了北京市气温的外强迫信号,分析其外强迫信号的尺度特征及其可能的物理机制。这些工作将为气候系统驱动力的研究提供新的思路。
Abstract:
      Slow feature analysis (SFA) is an effective method for extracting slow-changing features from fast-changing signals. Its proposal enriches the means of reconstruction of non-stationary system's driving force signals. Two-dimensional non-stationary system model be constructed based on Henon chaotic mapping. The authors try to test the ability of reconstructing driving force signals from two-dimensional and complex non-stationary system by SFA method. The experimental results show that the SFA can successfully extract the driving force signals from the non-stationary time series with one time-varying parameter. The driving force signals were also successfully extracted from the non-stationary time series with two time-varying parameters by SFA and wavelet transform technology. In addition, The driving force of Beijing air temperature was reconstructed by using SFA method. Wavelet transformation technique is then used to analyze the scale structure of the derived driving force. These efforts will provide new ideas for the study of climate system's driving force.
主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
联系电话: 010-82995048,010-82995049传真:010-82995048 邮编:100029 Email:qhhj@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号