违反了 PRIMARY KEY 约束 'PK_t_counter'。不能在对象 'dbo.t_counter' 中插入重复键。 语句已终止。 北京地区一次空气重污染过程的目标观测分析-A Study on Target Observation of a Heavy Air Pollution Event in Beijing
doi:  10.3878/j.issn.1006-9585.2018.18025
北京地区一次空气重污染过程的目标观测分析

A Study on Target Observation of a Heavy Air Pollution Event in Beijing
摘要点击 326  全文点击 313  投稿时间:2018-04-26  
查看HTML全文   下载PDF   查看/发表评论  下载PDF阅读器
基金:  国家自然科学基金41525017
中文关键词:  空气污染  数值预报  目标观测  北京
英文关键词:  Air pollution  Numerical forecast  Target observation  Beijing
              
作者中文名作者英文名单位
刘娜LIU Na中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;中国科学院大学, 北京 100049
段晚锁DUAN Wansuo中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;中国科学院大学, 北京 100049
王自发WANG Zifa中国科学院大学, 北京 100049;中国科学院大气物理研究所大气边界层物理与大气化学国家重点实验室, 北京 100029
唐晓TANG Xiao中国科学院大气物理研究所大气边界层物理与大气化学国家重点实验室, 北京 100029
周菲凡ZHOU Feifan中国科学院大气物理研究所云降水物理与强风暴实验室, 北京 100029
引用:刘娜,段晚锁,王自发,唐晓,周菲凡.2018.北京地区一次空气重污染过程的目标观测分析[J].气候与环境研究,23(5):619-632,doi:10.3878/j.issn.1006-9585.2018.18025.
Citation:LIU Na,DUAN Wansuo,WANG Zifa,TANG Xiao,ZHOU Feifan.2018.A Study on Target Observation of a Heavy Air Pollution Event in Beijing[J].Climatic and Environmental Research(in Chinese),23(5):619-632,doi:10.3878/j.issn.1006-9585.2018.18025.
中文摘要:
      针对北京市2016年12月16~21日的空气重污染过程进行了回报试验,探讨了该次事件预报的目标观测敏感区。使用新一代高分辨率中尺度气象模式(Weather Research Forecasting,WRF)和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS),针对初始气象场的不确定性,通过4套初始场资料识别了影响北京地区细颗粒物(PM2.5)预报水平的目标观测敏感变量及其敏感区。结果表明:当综合考虑初始气象场的风场、温度、比湿不确定性的影响时,发现改善黑龙江区域上述气象要素的初始场精度,对北京地区PM2.5预报不确定的减小最显著;当分别考察风场、温度、比湿的不确定性的影响时,发现初始风场精度的改善,尤其是黑龙江区域风场精度的改善,能够更大程度地减小北京地区PM2.5的预报误差,对北京东南地区的PM2.5预报误差的减小甚至可达到40%以上。因此,优先对黑龙江区域的气象场,尤其是该区域的风场进行目标观测,并将其同化到预报模式的初始场中,将会有效提高初始气象场的质量,进而大大减小北京地区PM2.5浓度的预报误差,提高北京地区空气质量的预报技巧。初始风场代表了北京地区该次空气重污染事件预报的目标观测变量,而黑龙江地区则是该目标观测的敏感区域。
Abstract:
      A hindcast experiment is conducted for the heavy air pollution event in Beijing that occurred during 16-21 December 2016 and the sensitive area for target observation that can help to improve initialization are explored using the Weather Research Forecasting (WRF) model and the Nested Air Quality Prediction Model System (NAQPMS). To address the uncertainty of meteorological initial field, the sensitive variables and areas for the prediction of PM2.5 concentration in Beijing are identified by adopting four sets of initial analysis fields. The results show that when considering the initial uncertainties of wind, temperature, and specific humidity, their reductions in Heilongjiang region can most significantly decrease the forecast error of the PM2.5 concentration in Beijing. Furthermore, it is found that the improvement of the accuracy of initial wind fields, especially that in Heilongjiang region, decreases the forecast error of the PM2.5 concentration in Beijing to a great extent, and the decrease can be up to more than 40% in southwestern Beijing. Therefore, increasing more meteorological (especially wind) observations in Heilongjiang region and assimilating these observations into the initial field of the WRF model will significantly improve the quality of the initial meteorological condition and thus greatly reduce the PM2.5 forecast error of the air pollution event in Beijing. The model forecast skill will be greatly improved. It is concluded that the wind component in the initial field represents the physical variable and Heilongjiang region is the sensitive area for target observation associated with the forecast of the heavy air pollution event in Beijing that is selected for the present study.
主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
联系电话: 010-82995048,010-82995049传真:010-82995048 邮编:100029 Email:qhhj@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号