违反了 PRIMARY KEY 约束 'PK_t_counter'。不能在对象 'dbo.t_counter' 中插入重复键。 语句已终止。 基于BP神经网络的北京夏季日最大电力负荷预测方法-A Method for Prediction of Daily Maximum Electric Loads in the Summer in Beijing Based on the BP Neural Network
doi:  10.3878/j.issn.1006-9585.2018.17126
基于BP神经网络的北京夏季日最大电力负荷预测方法

A Method for Prediction of Daily Maximum Electric Loads in the Summer in Beijing Based on the BP Neural Network
摘要点击 191  全文点击 235  投稿时间:2017-08-18  
查看HTML全文   下载PDF   查看/发表评论  下载PDF阅读器
基金:  北京市市委、市政府重点工作及区县政府应急项目预启动专项“城市效应可分辨数值天气预报技术与应用研发”Z151100002115045
中文关键词:  BP神经网络  日最大电力负荷  累积气象因子  预测模型
英文关键词:  BP neural network  Daily maximum electric load  Cumulative meteorological factors  Prediction model
           
作者中文名作者英文名单位
李琛LI Chen中国气象局北京城市气象研究院, 北京 100089;北京市气象服务中心, 北京 100089
郭文利GUO Wenli北京市气象服务中心, 北京 100089
吴进WU Jin京津冀环境气象预报预警中心, 北京 100089
金晨曦JIN Chenxi北京市气象服务中心, 北京 100089
引用:李琛,郭文利,吴进,金晨曦.2019.基于BP神经网络的北京夏季日最大电力负荷预测方法[J].气候与环境研究,24(1):135-142,doi:10.3878/j.issn.1006-9585.2018.17126.
Citation:LI Chen,GUO Wenli,WU Jin,JIN Chenxi.2019.A Method for Prediction of Daily Maximum Electric Loads in the Summer in Beijing Based on the BP Neural Network[J].Climatic and Environmental Research(in Chinese),24(1):135-142,doi:10.3878/j.issn.1006-9585.2018.17126.
中文摘要:
      利用2006~2017年北京夏季(6~8月)逐日最大电力负荷和同期气象资料,分析最大电力负荷与各种气象因子的相关性,基于BP(Back Propagation)神经网络算法,建立了两种夏季日最大电力负荷预测模型并对比。结果表明:北京夏季周末基础负荷远小于工作日,剔除时应加以区分;气象因子对气象负荷的影响具有累积效应,累积2 d时两者的相关性最强;结合实际,根据自变量的不同分别建立了两种日最大电力负荷预测模型;经实际预测检验,两种预测模型均取得了较好的预测效果,能够满足电力部门的实际需求,其中自变量中加入前一日气象负荷的模型效果更优。
Abstract:
      Based on daily maximum electric loads and meteorological data in the summer (June-August) from 2006 to 2017 in Beijing, the relationship between electric load and meteorological factors is diagnosed. Using the BP (Back Propagation) neural network algorithm, two maximum electric power load prediction models are established and evaluated. The results indicate that (1) the basic electric load on weekends in Beijing in the summer is much less than that in working days, which should be distinguished when being removed; (2) the influence of meteorological factors on meteorological load has cumulative effect, and the correlation between them is the highest for two days of accumulation; (3) taking the actual situation into account, two different daily maximum electric load forecasting models are established based on different independent variables. Comparing the prediction results with actual data, both of the forecasting models show good prediction performance that can meet the actual demand of the power sector. The forecasting model with meteorological load of the previous day as an independent variable shows better prediction effect.
主办单位:中国科学院大气物理研究所/中国气象学会 单位地址:北京市9804信箱
联系电话: 010-82995048,010-82995413传真:010-82995048 邮编:100029 Email:qhhj@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号